US009058240B2

a2z United States Patent 10y Patent No.: US 9,058,240 B2
Dykstal et al. 45) Date of Patent: Jun. 16, 2015
(54) MULTI-CONTEXT REMOTE DEVELOPMENT 7,716,640 B2 52010 Piketal
8,060,855 B2* 112011 Hegdeetal. 717/103
. . . . s 8,091,066 B2 1/2012 Fiore
(71) Applicant: Internatl(?nal Business Machines 2004/0230982 Al* 11/2004 WOOKEY ..oovovvvvrvrrrr 718/106
Corporation, Armonk, NY (US) 2004/0268364 A1* 12/2004 Faraj 719/316
2006/0111888 Al* 5/2006 Hiew et al. .. 703/22
(72) Inventors: David W. Dykstal, Rochester, MN (US); 2006/0155740 A1 7/2006 Chen et al.
Mike S. Fulton, British Columbia (CA); 2006/0277528 Al* 12/2006 Chenetal. ..cccoccooiriirrn. 717/124
; U 2007/0038982 Al* 2/2007 Andrews et al. . 717124
Dave K. McKnight, Newmarket (CA); 2008/0059943 Al* 3/2008 Krevsetal. 717/103
Kushal S. Munir, Vaughan (CA); Rick 2008/0127034 Al* 5/2008 Pasricha etal. 717/100
L. Sawyer, Toronto (CA); Eric V. 2008/0201453 Al* 82008 Assenmacher 709/219
Simpson, Sharon (CA) 2008/0313549 Al* 12/2008 Stoyanov etal. 715/749
2009/0077556 Al* 3/2009 Nohr 718/101
: . ; : ; 2009/0094572 Al* 4/2009 Hegde et al. 717/101
(73) Assignee: Icntemat"fnalzlsmrfﬁsff; c[l}g‘es 2009/0106731 Al* 4/2009 Coulthard etal. 717/101
orporation, Armonk, (Us) 2009/0132995 Al* 5/2009 Iborraetal. 717/106
. . o . 2009/0234478 A1* 9/2000 Muto et al. .coccooocvcerenrr. 700/94
(*) Notice: Subject to any disclaimer, the term of this 2010/0036914 Al* 2/2010 Chesta 709/205
patent is extended or adjusted under 35 2010/0192121 A1* 7/2010 Unnithan et al. 717/103
U.S.C. 154(b) by 154 days. (Continued)
(21) Appl. No.: 13/692,486 OTHER PUBLICATIONS
a1 “C/C++ Remote Development—NetBeans IDE 6.9 Tutorial”,
(22) Filed: Dec. 3,2012 retrieved Jul. 24, 2012; retrieved from the Internet http://netbeans.
(65) Prior Publication Data org/kb/docs/cnd/remotedev-tutorial .html.
Continued
US 2014/0157226 Al Jun. 5, 2014 ()
(51) Int.CL Primary Examiner — Don Wong
GO6F 9/44 (2006.01) Assistant Examiner — Roberto E Luna
74) Attorney, Agent, or Firm — Cantor Colburn LLP;
(52) US.CL ey, Ag
CPC oo GOGF 8/70 (2013.01) Edward Choi
(58) Il:“IiOeIII: of Classification Search 7) ABSTRACT
See application file for complete search history. A method implemented by a processor and a system develop
a software project targeting one or more remote systems. The
(56) References Cited method includes generating a project on alocal system, which

U.S. PATENT DOCUMENTS

5,481,720 A *
7,254,786 B2 *
7,428,756 B2*
7,543,188 B2 *

1/1996 Loucks et al.

8/2007 Henriquez
9/2008 Wookey
6/2009 Devasetal. ... 714/38.14

{ create project
f

1110

.................. 726/21

includes receiving user input through a user interface. The
project includes one or more source files. The method also
includes generating one or more remote contexts correspond-
ing to the one or more remote systems.

14 Claims, 11 Drawing Sheets

ﬁ
(1120

l create remote context l

1140/\

/\1.{30

‘ synchronize the project

' build the project

/‘\

l run the proje;:t ‘

1150

US 9,058,240 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2010/0325557 Al*
2011/0161928 Al*
2011/0283257 Al*
2011/0319056 Al*
2013/0031536 Al*
2014/0157226 Al*

12/2010
6/2011
11/2011
12/2011
1/2013
6/2014

Sibillo ..coooviiiniin 715/751
Sangraetal. ... 717/115
Charisiusetal. 717/109
Toyetal. 455/412.2
Deetal. 717/146
Dykstal etal. 717/101

OTHER PUBLICATIONS
“Eclipse Remote Development Guidelines (Draft)”, retrieved Jul. 24,
2012; retrieved from the Internet http://www.eclipse.org/eclipse/
platform-core/documents/2.0/remote-development. html.
Anonymous, “Hybrid local/remote filesystem” retrieved from Prior
Art Database, ip.com, May 28, 2012, pp. 1-5.
IBM, “IDE projects for simultaneous multi-platform development”
retrieved from Prior Art Database, ip.com, Nov. 5, 2004, pp. 1-3.

* cited by examiner

US 9,058,240 B2

Sheet 1 of 11

Jun. 16, 2015

U.S. Patent

uzzt
Juozl

22T
/2021

qzet
/02T

1514

ezl
/eoct

81T

9Tt

Vit

[4n)

00T

U.S. Patent Jun. 16, 2015 Sheet 2 of 11 US 9,058,240 B2

0 o0
— —
—t —
N
L
-
(":jl -
—
o~
— 3 o
i —

110

US 9,058,240 B2

Sheet 3 of 11

Jun. 16, 2015

U.S. Patent

¢ Ol

US 9,058,240 B2

Sheet 4 of 11

Jun. 16, 2015

U.S. Patent

0ct

U.S. Patent Jun. 16, 2015 Sheet 5 of 11 US 9,058,240 B2

FIG. 5

US 9,058,240 B2

Sheet 6 of 11

Jun. 16, 2015

U.S. Patent

0¢s

RN

s
SRS Y
1 B

03

Y

54
By

9 'Ol

SRR

e g dey

Ay

L

US 9,058,240 B2

Sheet 7 of 11

Jun. 16, 2015

U.S. Patent

.

Wk

01L

e

Rt

US 9,058,240 B2

Sheet 8 of 11

Jun. 16, 2015

U.S. Patent

8 DOl4

0¢8

01

LR

g

PIRIGRIRIE

e
@y

US 9,058,240 B2

Sheet 9 of 11

Jun. 16, 2015

U.S. Patent

0

I

S

Ot

g
AR L

US 9,058,240 B2

Sheet 10 of 11

Jun. 16, 2015

U.S. Patent

o]

S

0T¢

0T Si

B

fapusg

Bugnssg

A

sl R TR

et

4§ g

=

e Aey
IR AR

g

i \.“.w.u

5

US 9,058,240 B2

Sheet 11 of 11

Jun. 16, 2015

U.S. Patent

11 5l

109foad ay3 unJ

0sT1 ;

—

13load ay3 pjing

103{oud a3yl 9zjuoiyduAs

Ottt

/\o_u:

IX=21U0D 210Ul 3aleald

ooxt |

109load 91040 |

0111

US 9,058,240 B2

1
MULTI-CONTEXT REMOTE DEVELOPMENT

BACKGROUND

The present invention relates to software development, and
more specifically, to software development targeting multiple
remote systems.

An integrated development environment (IDE) is a soft-
ware application that facilitates software development. An
IDE may include, for example, a source code editor, build
automation tools, and a debugger, where the source code
includes instructions on how a program should operate. Typi-
cally, a set of source files are fed to a build tool (e.g., compiler)
that produces output such as intermediate objects, libraries,
executable files, or some combination thereof. Historically,
build output was designed to be used on the same workstation
as the IDE used to develop the source files. More recently,
some development environments facilitate the production of
build outputs that run on systems that are remote to the work-
station on which the IDE resides.

For example, by including a cross-compiler, the build tool
of the IDE may produce output designed to be used on a
platform other than the one on which the build was done.
Some languages, such as Java, for example, produce build
output that can run on any platform. Thus, when developing
source code in those languages, with the cross-compiler
approach, the local build tool is sufficient to produce the
necessary output. However, platform-neutral languages like
Java are not common, and it can be difficult to find the nec-
essary cross-compiler for a given language/platform combi-
nation when the language is not platform-neutral. In addition,
without additional remote instrumentation, the build result
according to the approach above is not automatically pro-
vided to a target remote machine.

Another approach involves running the build on a target
remote system rather than on the local platform that includes
the IDE used to develop the source code. In this case, the
source code must be available on the remote host in order to
run the build. Thus, the source code must either be developed
remotely (developed on the remote platform using the IDE on
the local platform) or the local project source code must be
synchronized to the remote system. This type of direct remote
development is supported by some IDEs. Alternatively, a
push/pull mechanism is used to transfer files between the
local system and remote host. However, this approach is
limited to targeting a particular remote host and platform.

SUMMARY

According to one embodiment of the present invention, a
method implemented by a processor to develop a software
project targeting one or more remote systems includes gen-
erating a project on a local system, the generating the project
including receiving user input through a user interface and the
project including one or more source files; and generating one
or more remote contexts corresponding to the one or more
remote systems.

According to another embodiment of the invention, a soft-
ware development environment to develop a software project
targeting one or more remote systems includes a development
application implemented by a processor, the development
application facilitating the generation of a project; a remote
context subsystem implemented by the processor, the remote
context subsystem facilitating the generation of one or more
remote contexts corresponding with the one or more remote
systems; and a memory device configured to store the project
and the one or more remote contexts.

20

30

35

40

45

55

2

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with the advantages and the
features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The forgoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1 is a block diagram of a software development sys-
tem according to an embodiment of the invention;

FIG. 2 is ablock diagram detailing the local system accord-
ing to the embodiment shown in FIG. 1;

FIG. 3 illustrates an exemplary remote contexts view
according to an embodiment of the invention;

FIG. 4 illustrates an exemplary 1-to-N mapping between a
local project on a local system and a set of remote contexts on
remote systems according to embodiments of the invention;

FIG. 5 is an exemplary project property page according to
an embodiment of the invention;

FIG. 6 is an exemplary view to facilitate management of a
local project according to an embodiment of the invention;

FIG. 7 illustrates synchronization states of remote contexts
of an exemplary project according to an embodiment of the
invention;

FIG. 8 is an exemplary view of a synchronization page
according to an embodiment of the invention;

FIG. 9 illustrates the selection of a new primary context
according to an exemplary embodiment of the invention;

FIG. 10 is another exemplary view of the synchronization
page shown in FIG. 8; and

FIG. 11 is a flow diagram of an exemplary method accord-
ing to an embodiment of the invention.

DETAILED DESCRIPTION

As noted above, a platform-neutral language or cross-com-
piler may be used to produce a build output (on a local
platform) that can be run on a remote system. Alternatively,
the build may be run remotely. However, while these
approaches may facilitate targeting a particular remote host
and platform, a development project may be intended to work
across multiple platforms or in a distributed fashion on sev-
eral machines simultaneously. Embodiments of the invention
described herein describe a system and method by which a
single project or other type of local resource in an IDE can
target multiple environments, platforms, and locations seam-
lessly and concurrently.

FIG. 1 is a block diagram of a software development sys-
tem 100 according to an embodiment of the invention. The
software development system 100 includes a local system
110 which runs on a local platform. The local system 110
includes one or more processors 112 that run the IDE and
other applications, including the local build tool. The local
system 110 also includes one or more memory devices 114, a
user interface 116, and an output device 118, which may
include a display. The one or more memory devices 114 store
the local project (set of related file resources including the
source code) and other files. The local system 110 may be
connected to remote systems 120 directly or via a network

US 9,058,240 B2

3

130 as shown in FIG. 1. The various remote systems 120 may
run on different platforms than the local system 110.

As discussed above, prior techniques facilitate targeting
one of the remote systems 120 with a project developed on the
local system 110. In that situation, a mapping between the
local project (on the local system 110) and the remote location
122 (location of the targeted remote system 120) is sufficient.
The remote location 122 on the corresponding remote system
120 may include, for example, host information and a file
system path when the remote system 120 is a UNIX system.
Properties such as build commands, compiler options, and
environment variables corresponding to the targeted remote
system 120 may easily be maintained at the project level. That
is, the local project maintains properties while the remote
location 122 of the targeted remote system 120 is used for
operations performed on the targeted remote system 120,
such as uploading and downloading resources and invoking
compilers. As also discussed above, embodiments of the
invention contemplate remote development on more than one
remote location 122 with a project. Consequently, using
remote locations 122 for each of the targeted remote systems
120 is insufficient. While a project associated with multiple
remote locations 122 may gain the added ability to push and
pull resources to and from each of the remote locations 122,
remote operations with properties maintained by the project
would suffer from the complexity of having to account for
different target environments for each remote location 122.
For example, the build command and environment variables
for one of the remote locations 1224 may be different than
those needed for another remote location 1224. Thus, even if
a project were only used for pushing and pulling resources,
the project would have to account for different synchroniza-
tion states between project resources and remote locations
122.

FIG. 2 is a block diagram detailing the local system 110
according to the embodiment shown in FIG. 1. Rather than
having each project maintain separate arrays of properties
corresponding to a given remote location 122, embodiments
of the invention use an independent construct referred to as a
remote context 210, which is stored in the memory device 114
of the local system. In alternate embodiments, the remote
context 210 may be stored in a location accessible to the local
project over the network 130. A remote context 210, like a
remote location 122, describes a host and a location on the
host. However, unlike a remote location 122, a remote context
210 is an independent entity, is platform-neutral, includes
additional properties from a remote location 122, can be
contributed to, and can be interacted with directly by users in
an IDE through the user interface 116 and output device 118.
Remote contexts 210 are created and managed by a remote
context subsystem 220 run on the processor 112. A single
remote context subsystem 220 may support more than one
type of remote context 210. A remote context 210 may have
contributions like additional property pages and menu con-
tributions. For example, a shell may be started from a selected
remote context 210, preset with environment variables that
were specified in the environment property page for the
remote context 210.

FIG. 3 illustrates an exemplary remote contexts view 300
according to an embodiment of the invention. The remote
contexts view 300 facilitates a user working with only the
contexts and provides a way to access desired remote
resources in a similar way that a project explorer view pro-
vides a way to work with local resources. The remote contexts
view 300 also provides a way to work with remote contexts
210 associated with a given project. Each remote context 210
maintains project-to-context synchronization state informa-

40

45

4

tion. Synchronization state of each local project resource with
respect to each remote context 210 refers to time stamps,
whether they are in synchronization, local changes, remote
changes, and conflicts between the project and remote. Each
remote context 210 may also maintain build commands and
environment variables for the associated remote system 120.
The remote contexts view 300 associated with a given project
illustrates the 1-to-N mapping between the local project and a
set of remote contexts 210 facilitated by embodiments of the
invention. FIG. 4 illustrates an exemplary 1-to-N mapping
between a local project on a local system 110 and a set of
remote contexts 210 on remote systems 120 according to
embodiments of the invention.

FIG. 5 is an exemplary project property page 500 accord-
ing to an embodiment of the invention. The project property
page 500 illustrates multi-context project creation and, spe-
cifically, remote context 210 addition, removal, and editing.
This page 500 represents an exemplary remote context sub-
system 220. Resources may be pushed and pulled between the
local project and corresponding remote contexts 210. In the
exemplary embodiment shown in FIG. 5, the first remote
context 210 is indicated as “[primary]” (primary context
510). This illustrates that, according to the exemplary
embodiment, every project has a primary context 510, which
is the remote context 210 that remote operations, such as
build, use by default. A secondary context may be synchro-
nized with the project but is treated differently from the pri-
mary context 510. The need for a designation of primary
context 510 is premised on the fact that not all operations are
suitable to be run in multiple remote contexts 210 simulta-
neously. For example, debugging in multiple remote contexts
210 simultaneously is typically not done or useful. Accord-
ingly, a default remote context 210, the primary context 510 in
the present embodiment, is the default designation for such
operations. The remote context 210 designated as the primary
context 510 may be changed as needed. That is, if a user
changes the primary focus of the project, a different remote
context 210 may be better-suited to be the primary context
510. The previous primary context 510 would then become a
secondary remote context 210. The “Remote Contexts” view
in FIG. 5 facilitates management of a project’s remote con-
texts 210. FIG. 6 is an exemplary view 600 to facilitate man-
agement of a local project (named “Raytracer”) according to
an embodiment of the invention. As shown in FIG. 6, the local
project (view 610) is shown alongside the corresponding
remote contexts 210 (view 620).

FIG. 7 illustrates synchronization states of a remote con-
text 210 of an exemplary project according to an embodiment
of the invention. As shown in FIG. 7, synchronization states
are indicated per project file as well as per remote context 210.
When a project targets a single remote location 122, synchro-
nization is relatively straightforward. Timestamps may be
stored in project metadata indicating the local resource times-
tamp at the time of last upload as well as the corresponding
remote system 120 timestamp at the time of the last down-
load. The timestamp information may be used to determine
whether resources are synchronized or not. If the stored
timestamps do not match actual timestamps, then pending
changes, remote changes, and conflicts are thereby detected.
However, when a project targets multiple remote contexts
210, aremote system 120 associated with one remote context
210 will have different timestamps than another remote sys-
tem 120 associated with another remote context 210. Accord-
ing to embodiments of the invention, a user may synchronize
the local resources with a single remote context 210 at a time
or with multiple remote contexts 210 at a time. When a user
works with a single remote context 210 at a time, download

US 9,058,240 B2

5

timestamps would vary from context-to-context even though
the stored upload timestamps (those associated with the
project) would be the same for all the remote contexts 210.
The stored timestamps used to indicate synchronization states
should be unique for each remote context 210. Thus, accord-
ing to embodiments of the invention, each remote context 210
may store its own context-specific synchronization informa-
tion. Resources may be synchronized as well as pushed and
pulled to/from a single remote location 120. A synchroniza-
tion operation would reveal any conflicts, remote updates
and/or pending local changes between the project and a
remote context 210. The synchronization state between the
project and the primary context 510 is shown in FIG. 7 (syn-
chronization state shown in column 710). Because the syn-
chronization state is context-sensitive, viewing the synchro-
nization state for multiple remote contexts 210 at one time is
not particularly useful and may result in a confusing user
experience. For example, FIG. 7 shows that there was a con-
flict between “Colourh” in the local project and in the pri-
mary context 510. If additional remote contexts 210 included
additional versions of “Colour.h” that conflicted with both the
project version and the primary context 510 version, visual
indications of those conflicts would increase the complexity
of the display rather than clarify the information presented.

FIG. 8 is an exemplary view 810 of a synchronization page
(labeled “Remote Reconciler” in the example) according to
an embodiment of the invention. This view 810 shows that
conflicts or updates may be resolved one remote context 210
atatime by pushing pending changes (820) or pulling remote
changes. In the exemplary view 810, a change in “Cboard.h”
that was shown as “pending” in FIG. 7 is pushed to the
primary context 510 (820) as shown in FIG. 8. In alternate
embodiments, the pending files may be pushed to all remote
contexts 210 rather than only the primary context 510. While
pushing changes from the local project may be to the primary
context 510 or to all remote contexts 210, pulling changes into
the project and handling conflicts between files typically
involves only the project and the primary context 510. FIG. 9
illustrates the selection of a new primary context 510 accord-
ing to an exemplary embodiment. In the example shown by
FIG. 9, the change in primary contexts 510 can be affected
from the same view (810) as the conflict resolution. In the
example shown in FIG. 9, the primary context 510 is changed
from “(dbgaix3) RayTracer” to “(swgc602) raytracer.”

FIG. 10 is another exemplary view 810 of the synchroni-
zation page (“Remote Reconciler”) shown in FIG. 8 based on
the selection of a new primary context 510 as shown in FIG.
9. That is, after “(swgc602) raytracer” is selected as the new
primary context 510 (as shown in FIG. 9), the project-to-
context timestamp information is determined using the new
primary context 510, and synchronization status between the
projectand the new primary context 510 is displayed (column
1000). Specifically, column 1000 would show the changes in
the local project that are pending a push to the primary context
510. Column 1000 may also show remote changes that must
be pulled into the project and conflicts between the project
and the primary context 510. Without context-based synchro-
nization states, switching primary contexts 510 would
involve pushing all local resources and then accounting for
conflicts. Because embodiments of the invention include each
remote context 210 (and the primary context 510) maintain-
ing its own synchronization state information, switching from
one remote context 210 to another as the primary context 510
is facilitated without confusion in the user display.

While embodiments discussed above relate to synchroniz-
ing projects with remote contexts 210, local mapping may be
generalized to more granular resources like folders or files.

10

15

20

25

30

35

40

45

50

55

60

65

6

The additional granularity facilitates cases (e.g., web
projects) in which only some portions of a project are to be
pushed and/or pulled. Maintenance of remote context 210
mapping metadata may be provided for arbitrary resources to
facilitate user association of a remote context 210 with an
arbitrary local resource.

A remote operation (operation, such as a build, on a remote
system 120) may use properties maintained by the corre-
sponding remote context 210. For example, a build may use
environment variables for a given remote context 210 to indi-
cate what options to use during a compile of the source code.
Even if build options were maintained independently of the
corresponding remote contexts 210, the configuration may
still be associated with the corresponding remote context 210.
For example, a unique identifier may be stored for the con-
figuration as a property of the corresponding remote context
210. In this way, each remote context 210 may be associated
with a different kind of build (e.g. debug/opt, OS-specific,
tool-specific).

A build may be performed on one remote context 210 at a
time or on multiple remote contexts 210. The build may be
performed in the remote location 122 and the errors, warn-
ings, and information messages generated by the build may
be brought back to the local system 110 for display to the user
via the output device 118. Embodiments that include per-
forming the build on the remote system 120 avoid the need for
a cross-compiler in the local system 110. Eclipse error mark-
ers for each error may be associated with the local project
resource that corresponds to the remote resource presenting
an issue for the compiler. When the primary context 510 is
changed, the errors, warnings, and informational messages
produced during the build for the previous primary context
510 may no longer be valid. However, the information need
not be entirely discarded because the user may return to the
previous primary context 510 as the primary context 510 once
again. As with timestamps used for synchronization, build-
related messages may be stored as context-specific properties
in the respective remote contexts 210. When build-related
messages are stored in association with the remote context
210, displaying the relevant messages when a user changes
the primary context 510 is facilitated. When a user elects to
build for all remote contexts 210 at once, a separate build is
initiated for each remote context 210. When all the builds are
complete, the errors, warnings, and informational messages
may be displayed by context or amalgamated into a single set
of project markers. In embodiments including the amalgam-
ated listing of project markers, when the same error is
detected in multiple remote contexts 210, a single error may
be displayed for ease of viewing.

FIG. 11 is a flow diagram of an exemplary method 1100
according to an embodiment of the invention. At block 1110,
creating a project on a local system 110 includes generating
source code. At block 1120, creating one or more remote
contexts 210 facilitates targeting one or more remote systems
120 with the project according to embodiments of the inven-
tion. This block represents using a remote context subsystem
220 run by the processor 112 of the local system 110. As
detailed above, each remote context 210 is an independent
entity with regard to the project and is platform-neutral. Each
remote context 210 corresponds with one or more remote
systems 120. The remote context subsystem 220 facilitates
user input through the user interface 116 to create and modify
remote contexts 210. At block 1130, synchronizing the
project includes synchronizing the project with each remote
context 210, one at a time with a designated primary context
510 or all at once. Each remote context 210 maintains its
respective project-to-context synchronization state informa-

US 9,058,240 B2

7

tion and the information may be displayed per remote context
210 or for all remote contexts 210 through the output device
118. Atblock 1140, building the project includes building for
each remote context 210 one at a time with a designated
primary context 510 or all at once. Each remote context 210
maintains its respective build messages which may be dis-
played per remote context 210 or for all remote contexts 210
through the output device 118. Once the build process is
completed, the project may be run on one or more of the
remote systems 120.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one more other features, integers, steps, operations, ele-
ment components, and/or groups thereof.

The description of the present invention has been presented
for purposes of illustration and description, but is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the invention. The embodiment
was chosen and described in order to best explain the prin-
ciples of the invention and the practical application, and to
enable others of ordinary skill in the art to understand the
invention for various embodiments with various modifica-
tions as are suited to the particular use contemplated.

The flow diagram depicted herein is just one example.
There may be many variations to this diagram or the steps (or
operations) described therein without departing from the
spirit of the invention. For instance, the steps may be per-
formed in a differing order or steps may be added, deleted or
modified. All of these variations are considered a part of the
claimed invention.

While the preferred embodiment to the invention had been
described, it will be understood that those skilled in the art,
both now and in the future, may make various improvements
and enhancements which fall within the scope of the claims
which follow. These claims should be construed to maintain
the proper protection for the invention first described.

What is claimed is:

1. A method implemented by a processor to develop a
software project targeting two or more remote systems, the
method comprising:

generating, using the processor, a project on a local system,

the generating the project including receiving user input
through a user interface and the project including one or
more source files;
generating, at the local system, two or more remote con-
texts corresponding to the two or more remote systems,
the two or more remote contexts facilitating targeting the
two or more remote systems with the one or more source
files of the project on the local system; and

synchronizing one or more of the two or more remote
contexts with the project, the synchronizing including
determining a synchronization state which indicates
pending changes and conflicts between the project and
the respective remote context.

2. The method according to claim 1, wherein the generating
the two or more remote contexts includes a user creating or
modifying the two or more remote contexts through the user
interface.

10

15

20

25

30

35

40

45

50

55

60

65

8

3. The method according to claim 1, further comprising
storing the synchronization state in association with each of
the one or more of the two or more remote contexts and
displaying the synchronization state for each of the one or
more of the two or more remote contexts one at a time.

4. The method according to claim 1, further comprising
storing the synchronization state in association with each of
the one or more of the two or more remote contexts and
displaying the synchronization state for the one or more of the
two or more remote contexts together.

5. The method according to claim 1, wherein the synchro-
nizing includes resolving issues indicted by the synchroniza-
tion state for the project and the respective remote context.

6. The method according to claim 5, wherein the resolving
the issues includes pushing changes in the project to the
remote context, pulling changes in the remote context to the
project, and addressing conflicts between the project and the
remote context using the user interface.

7. The method according to claim 1, further comprising
building the project to run on one or more of the two or more
remote systems using build information in the corresponding
remote context of the one or more of the two or more remote
systems.

8. The method according to claim 7, further comprising
storing the build information in association with each of the
one or more of the two or more remote contexts and display-
ing the build information for each of the one or more of the
two or more remote contexts one at a time.

9. The method according to claim 7, further comprising
storing the build information in association with each of the
one or more of the two or more remote contexts and display-
ing the build information for the one or more of the two or
more remote contexts together.

10. A software development environment to develop a soft-
ware project targeting one or more remote systems, the sys-
tem comprising:

adevelopment application implemented by a processor, the

development application facilitating the generation of a
project on a local system;

aremote context subsystem implemented by the processor,

the remote context subsystem facilitating the generation
of two or more remote contexts corresponding with the
two or more remote systems, the two or more remote
contexts facilitating targeting the two or more remote
systems with the project on the local system;

a memory device configured to store the project and the

two or more remote contexts; and

a synchronization module implemented by the processor,

wherein the synchronization module synchronizes the
project with each of the two or more remote systems
using respective synchronization state information.

11. The system according to claim 10, wherein the memory
device stores source code included in the project.

12. The system according to claim 10, wherein the memory
device stores the synchronization state information corre-
sponding with each file of each of the two or more remote
contexts.

13. The system according to claim 10, further comprising a
communication module communicating with the two or more
remote systems, wherein the communication module receives
build information for a build of the project on one or more of
the two or more remote systems.

14. The system according to claim 13, wherein the build
information is stored in association with the corresponding
remote context.

